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The angle-dependent interlayer magnetoresistance of the pressurized �to the normal metallic state� layered
organic metal �-�BEDT-TTF�2KHg�SCN�4 is found to change from the conventional behavior at low magnetic
fields to an anomalous one at high fields. The dependence of this field-induced crossover on the sample purity
and temperature reveals parallel contribution of the classical Boltzmann and incoherent channels in the inter-
layer conductivity. The latter channel, having a metallic temperature dependence but being insensitive to an
in-plane magnetic field, may be responsible for magnetoresistance anomalies observed in a number of layered
metals. We propose a possible mechanism for the incoherent channel combining interlayer tunneling via local
hopping centers and intralayer diffusion.
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I. INTRODUCTION

Dimensional crossovers and their influence on transport
properties and electronic states is a long standing and still
controversial issue in the field of highly anisotropic corre-
lated conductors, such as superconducting cuprates, cobal-
tates, organics, intercalated compounds, etc. One of the most
frequently discussed mechanisms of breaking the interlayer
band transport in a layered metal is due to scattering. If the
scattering rate �−1 is larger than the interlayer hopping rate,
�h

−1� t� /�, the quasiparticle momentum and Fermi surface
are only defined within conducting layers, i.e., become
strictly two dimensional �2D�. Nevertheless, as long as the
charge transfer between two adjacent layers is determined by
direct one electron tunneling �“weakly incoherent” regime1�,
the interlayer resistivity ���T� is predicted to be identical to
that in the fully coherent three-dimensional �3D� case2,3 and
thus proportional to the resistivity along the layers ���T�. At
increasing temperature, the conductivity due to direct tunnel-
ing decreases and other conduction mechanisms associated,
e.g., with small polarons4,5 or resonant impurity tunneling3,6

may come into play. This may lead to a crossover from a
low-temperature metallic to a high-temperature, seemingly,
nonmetallic temperature dependence of �� which was re-
ported for various layered materials.7–11 However, it does not
explain the fact that the resistivity anisotropy in many of
these compounds grows continuously upon cooling deep into
the metalliclike regime of ���T�.7–9,12

In addition to the latter apparent inconsistency, recent
magnetotransport experiments have revealed a low-
temperature behavior strongly violating theoretical pre-
dictions. The interlayer resistance R� of a, presumably,
weakly incoherent sample of the organic metal
�-�BEDT-TTF�2KHg�SCN�4 has been found to be insensi-
tive to a strong magnetic field applied parallel to layers.13

This is, in particular, reflected in a broad dip in the angular
dependence of magnetoresistance which is centered at �
=90° and scales with B�=B cos �, where � is the angle be-
tween the field and the normal to layers. While a similar dip

in the angle-dependent magnetoresistance �AMR� has been
observed on a number of other layered materials with differ-
ent in-plane Fermi-surface topologies,14–17 its origin remains
unexplained.

For the organic conductor �TMTSF�2PF6 characterized by
a flat weakly warped Fermi surface the anomalous dip struc-
ture was reported for a field rotation in the plane of the Fermi
sheets.14,18 It was, however, noticed18 that the dip develops
only at a high enough magnetic field B�1 T; at low fields
the curves R���� display a conventional shape with a maxi-
mum at the field parallel and a minimum at the field perpen-
dicular to layers. The dramatic change in the AMR behavior
was interpreted as a result of a field-induced confinement of
conducting electrons. Semiclassically, the excursion of a
charge carrier across the layers is restricted by a strong in-
plane magnetic field B� and limited to within one layer when
B� �Bc=4t� /edvF, where e is the elementary charge, d is the
interlayer period, and vF is the Fermi velocity. This was sug-
gested to lead to a dimensional crossover and a consequent
breakdown of the Fermi-liquid behavior.19 While the field-
induced confinement scenario19 describes qualitatively a
number of features of the magnetoresistance in
�TMTSF�2PF6, it still does not provide a consistent explana-
tion for the dip around �=90°. It remains also unclear why
the crossover field increased with temperature in the
experiment.18 Further, as it will be shown below, the cross-
over between the low-field, conventional, and high-field,
anomalous AMR can also be observed on a system possess-
ing a cylindrical Fermi surface. It is unclear, to what extent
the field-induced confinement can be effective in this case.

In the present paper we report on the crossover in the
shape of the angle-dependent interlayer magnetoresistance of
�-�BEDT-TTF�2KHg�SCN�4. All the measurements were
done under a pressure of �6 kbar in order to suppress the
density-wave formation and stabilize the normal metallic
state20 with a well-defined Fermi surface consisting of a pair
of open sheets and a cylinder.21 We show that the field-
induced confinement model19 is inconsistent with the evolu-
tion of the crossover with temperature and sample purity. On
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the other hand, the observed behavior is strongly suggestive
of two parallel contributions to the interlayer conductivity: a
classical Boltzmann channel, 	c, and an anomalous incoher-
ent channel, 	i. We propose a possible explanation of the
field and temperature dependence of 	i, without invoking
non-Fermi-liquid effects.

II. EXPERIMENT

The samples used in this study were single crystals of
�-�BEDT-TTF�KHg�SCN�4 in the form of platelets with
typical dimensions of �0.5
0.7 mm2 in the plane of highly
conducting layers �crystallographic ac plane� and a thickness
of 0.07–0.2 mm. To measure the interlayer resistance, two
pairs of annealed platinum wires of 20 �m diameter were
glued to both ac faces of a sample by a conducting graphite
paste, yielding contact resistances of �10 �. The contacted
samples were placed into a 10 mm diameter piston-cylinder
pressure cell made of beryllium copper. A pressure of up to 8
kbar was applied using GKZh silicon oil as pressure medium
and locked at room temperature. A pressure drop of
�1.5 kbar during cooling down to liquid-helium tempera-
tures was measured using a calibrated manganin resistive
gauge placed in the sample space close to the samples. Two
samples could be mounted in the cell for simultaneous mea-
surements at identical conditions. The loaded cell was fixed
on a two-axis rotation stage allowing an in situ variation in
the sample orientation with respect to the applied magnetic
field. The orientation was defined as shown in the inset in
Fig. 1: by the polar angle � between the field direction and
the normal to the ac plane and by the azimuthal angle 

between the field projection on the ac plane and the a axis.
The absolute values of both angles could be determined to an
accuracy better than 0.5°, the angular resolution was better
than 0.1°. The measurements were performed in a 4He flow
cryostat with a base temperature of 1.4 K. Magnetic fields up
to 15 T were generated by a superconducting coil. The ex-
perimental results presented below for two samples, studied
in the same measurement run, have been reproduced on sev-
eral other samples measured separately under similar
conditions.

III. RESULTS AND DISCUSSIONS

A. Crossover in the AMR shape

Figure 1 shows AMR patterns from two samples of
�-�BEDT-TTF�2KHg�SCN�4 under a pressure of 6 kbar, re-
corded at T=1.4 K, at different field intensities, B=0.12,
0.5, 3, and 15 T. For both samples, the field is rotated in the
plane perpendicular to the highly conducting ac plane and
forming an angle 
�20° with the a axis, the latter being
perpendicular to the open Fermi sheets. The oscillatory be-
havior, particularly pronounced at high fields, is due to the
semiclassical angular magnetoresistance oscillations and
Shubnikov–de Haas effects, as described in detail
elsewhere.22 It reveals a high crystal quality of both samples,
providing an estimate for the transport scattering time, �1
��2 /3�5 ps for samples 1 and 2, respectively. In the rest

of the paper we focus on the nonoscillating magnetoresis-
tance component.

The low-field curves shown in Fig. 1 have a conventional
form for both samples: the AMR is maximum �minimum� at
the field directed nearly parallel �perpendicular� to layers. At
fields above �1 T, a broad dip around �= �90° develops in
the AMR of sample 1. Already at B=3 T the magnetoresis-
tance displays an absolute minimum at the field aligned par-
allel to layers �and perpendicular to the current�. This cross-
over in the AMR shape is very similar to that reported for
�TMTSF�2PF6.18 Note, however, that in the present case the
Fermi surface contains, besides open sheets, a cylindrical
part and 
�20° corresponds to the field rotating close to the
plane perpendicular to the open sheets. Such a geometry is
clearly unfavorable for the field-induced confinement
scenario.19

A comparison between the AMR of two samples shown in
Fig. 1 reveals yet another disagreement with the field-
induced confinement model. While the confinement field Bc
is formally independent of the scattering time, the model
implies a sufficiently high � so that the strong-field criterion,
�c��1 �where �c is the characteristic frequency of orbital

FIG. 1. �Color online� �a� Angle-dependent interlayer mag-
netoresistance of a relatively dirty sample, 1, of
�-�BEDT-TTF�2KHg�SCN�4 in the high-pressure metallic state re-
corded at T=1.4 K at magnetic fields �bottom to top�: 0.12, 0.5, 3,
and 15 T; 
�20°. �b� Same for a very clean sample, 2. The upper
inset illustrates the definition of angles � and 
; the lower inset:
enlarged fragment of the 3 T curve showing a small “coherence
peak.”
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motion in a magnetic field�, is fulfilled. Therefore, the effect
should be seen, first of all, in clean samples. By contrast, in
our case the crossover is observed in the relatively dirty
sample 1, whereas the cleaner sample 2 preserves the normal
anisotropy up to the highest field applied.

B. Two channels in the interlayer conductivity

For understanding the observed behavior, it is instructive
to study the magnetoresistance of sample 1 as a function of
magnetic field, aligned parallel to layers, and its evolution
with temperature. The relevant data are shown in Fig. 2 in
the form of a Kohler plot. Here, R0�T� is the zero-field resis-
tance �see the inset� and the normalized field-dependent in-
terlayer conductivity 	�B ,T� /	�0,T� is obtained from R�B�
measurements, taking into account that 	�B��1 /R�B� in our
quasi-two-dimensional material. According to Kohler’s rule,
the magnetoresistance or, in our representation, magnetocon-
ductivity at different fields and temperatures should be just a
function of B /R0�T�. This rule is strongly violated in Fig. 2:
the curves corresponding to different temperatures rapidly
diverge from each other. On the other hand, all the curves �at
least, those from 1.4 to 10 K� tend to saturation23 at B /R0
�0.5.

The described behavior suggests two parallel contribu-
tions in the conductivity:

	�B,�� = 	c�B,�� + 	i�B�,�� . �1�

Here, the first term on the right-hand side is the coherent
Boltzmann conductivity depending on both the strength and
orientation of a magnetic field.24,25 In a field parallel to layers
it decreases proportional to ��c��� with 1���2 and, at a
high enough field, the second term in Eq. �1� becomes domi-
nant. We associate the latter with incoherent interlayer

charge transfer. In agreement with previous observations,13

the incoherent conductivity is insensitive to the in-plane
magnetic field; however, it does depend on the field compo-
nent B� perpendicular to layers. This is why the resistance
increases, as the field is tilted from the direction parallel to
layers �3 and 15 T curves in Fig. 1�a��. At high fields, the
total conductivity is dominated by 	i in a large angular in-
terval around �= �90°, which leads to a scaling behavior of
magnetoresistance: R�B ,��=R�B cos ��.13

Evaluating the relative contribution of 	i�T� to the total
zero-field conductivity 	�0,T� of sample 1 from the level, at
which the curves in Fig. 2 come to saturation, and using the
R0�T� data plotted in the inset of Fig. 2, one can extract
separately the temperature dependences of the classical
Boltzmann �circles in the inset� and incoherent �triangles�
channels. Note that even the anomalous, incoherent channel
shows a metallic behavior.

Taking into account that the incoherent channel is insen-
sitive to an in-plane field, it is natural to replot the data in
Fig. 2 after excluding its contribution to the total conductiv-
ity. The resulting Kohler plot for the coherent channel,
	c�B ,T� /	c�0,T�= �	�B ,T�−	i�T�� / �	�0,T�−	i�T��, is
shown in Fig. 3. Note that the total zero-field resistance
R0�T� is replaced by the resistance Rc�T� corresponding to
the coherent channel �circles in the inset of Fig. 2� in the
argument of the Kohler plot. By contrast to the total conduc-
tivity, the coherent channel demonstrates a very good scaling
according to Kohler’s rule: the curves in Fig. 3 are almost
indistinguishable from each other, thus providing a substan-
tial support to our two-channel model.

The presence of two channels in the interlayer conductiv-
ity provides a natural explanation for the anomalous dip in
the AMR found, at certain conditions, on very clean samples
of �-�BEDT-TTF�2KHg�SCN�4.13 In such samples, the con-

FIG. 2. �Color online�. Kohler plot of the normalized interlayer
conductivity of sample 1 for the field aligned parallel to conducting
layers obtained from field sweeps at different temperatures. Inset:
temperature dependence of the zero-field resistance R0 �thick line�
and the resistances of the coherent, Rc�1 /	c, �circles� and incoher-
ent, Ri�1 /	i, �triangles� channels, see text.

FIG. 3. �Color online�. Kohler plot of the coherent part of inter-
layer conductivity of sample 1 in the field parallel to the layers at
temperatures 1.4 to 10 K. The coherent conductivity has been de-

termined from the data in Fig. 2:
	c�B,T�
	c�0,T� =

	�B,T�/	�0,T�−	i�T�/	�0,T�
1−	i�T�/	�0,T� . The

resistance Rc�T� corresponding to the coherent channel at zero mag-
netic field is taken from the inset in Fig. 2.
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ductivity is dominated by 	c as long as the in-plane field
component parallel to the open Fermi sheets is small. This is,
in particular, reflected in the shape of the small-
 AMR of
sample 2 shown in Fig. 1�b�: the angular dependence on the
vicinity of �= �90° is rather flat and shows a narrow peak,
revealing a coherent 3D Fermi surface.24 When the in-plane
field component is turned from the a axis to the c axis, which
is parallel to the open Fermi sheets, the coherent conductiv-
ity rapidly drops down.24 Under these conditions, the inco-
herent channel 	i may become important, which leads to the
anomalous dip structure in the b�c-rotation patterns of the
AMR even for relatively clean samples.13 In the same way
can be interpreted the 90° dips observed in the AMR of clean
samples of other highly anisotropic compounds, like
�TMTSF�2X with X=PF6 �Ref. 26� and ReO4 �Ref. 15� or
��-�BEDT-TTF�2SF5CH2CF2SO3.16

The proposed model also explains the temperature depen-
dence of the crossover field Bc observed in the experiment on
�TMTSF�2PF6.18 Indeed, while the contribution of the coher-
ent channel decreases with increasing temperature, as seen
from Fig. 2, it still remains significant at T�10 K. At the
same time, the scattering rate, which is proportional to the
resistance of the coherent channel, grows by about an order
of magnitude between 1.4 and 10 K �see inset in Fig. 2�.
Therefore, a much higher field is necessary at 10 K for
“freezing out” 	c and making the incoherent channel domi-
nant in the field and angular dependence of magnetoresis-
tance.

C. Possible mechanism of the incoherent channel

The metallic behavior of the incoherent conduction chan-
nel, see inset in Fig. 2, apparently comes into conflict with
the existing theories of incoherent interlayer charge
transfer,3–6 predicting an insulating temperature dependence.
In addition, those theories do not account for the significant
dependence of 	i on magnetic field normal to layers. To
comply with the experimental observations, we propose to
consider elementary events of incoherent interlayer hopping
via local centers, such as resonance impurities,3,6 in combi-
nation with diffusive intralayer transfer from one hopping
center to another. The essential requirement of our model is
that the volume concentration of hopping centers ni be small
so that the average distance li between them along the 2D
layers is much larger than the in-plane mean free path l�

=vF�: li= �nid�−1/2� l�. This condition, being opposite to the
model,3 looks reasonable since the concentration of resonant
impurities �i.e., those impurities which form an electron level
with energy close to the Fermi energy� is definitely much
lower than the concentration of all kinds of impurities. The
current through each hopping center is limited by the resis-
tance R�, which contains two in-series elements:

R� = Rhc + R� . �2�

The first part, Rhc, is the hopping-center resistance itself,
which is almost independent of magnetic field and can have
a weak nonmetallic temperature dependence Rhc�T�. The sec-
ond part, R�, is the intralayer resistance, which comes up
because the electrons must travel along the conducting layer

over a distance �li. In the limit li� l�, the 2D intralayer
current density j�r� at each point is proportional to the elec-
tric field E�r� at this point: j=	�dE, where an isotropic in-
plane conductivity is assumed for simplicity.

A stationary in-plane current obeys: div j�r�=0 every-
where except the hopping-center spots. In the vicinity of
each hopping center, the current and electric field are roughly
axially symmetric and given by

E�r − ri� =
j�r − ri�

	�d
=

I0

2�	�d

�r − ri�
	r − ri	2

, �3�

where I0 is the current through the hopping center located at
point ri. R� is determined by the in-plane mean voltage drop
between two successive hopping centers:

I0R��T� � 2

l�

li

E�r�dr =
I0 ln�li/l��

�	�d
. �4�

As the lower cutoff in the integral �Eq. �4�� we take the mean
free path l�, which neglects the resistance of the ballistic
region 	r−ri	� l�. Since the ballistic conductivity is much
higher than the diffusive one, this approximation should
work well, at least when ln�li / l��� ln�l� /d�.

The mean voltage drop between two adjacent conducting
layers is E0d= I0�Rhc+R��, where E0 is the external electric
field perpendicular to the layers. The total current density in
the interlayer direction is jt= I0nid=	iE0, yielding the inter-
layer conductivity:

	i =
�	�nid

3

�d	�Rhc + ln�li/l��
. �5�

The present simple model can be generalized by including
the distribution of the hopping centers n�Rhc�T�� and per-
forming integration over Rhc�T�. The exact result will depend
on the particular physical model of the hopping centers. In
the trivial case of short circuiting the layers �e.g., by dislo-
cations� Rhc�1 /d	� and 	i should be just proportional to the
intralayer conductivity. The fact that the temperature depen-
dence of the incoherent channel is metalliclike, however,
considerably weaker than that of the coherent one �inset in
Fig. 2�, implies that Rhc is larger than 1 /d	� and only slightly
varies with �or is independent of� temperature. Such condi-
tions can be fulfilled if the hopping occurs via resonance
impurities.3 Further, assuming hopping centers are nonmag-
netic, Rhc is insensitive to magnetic field and the dependence
of 	i�B� is determined by 	��B�. The latter is subject to the
usual galvanomagnetic effect in a field normal to conducting
layers, which leads to a decrease in 	i at increasing B�.
However, an in-plane magnetic field leaves 	� and, hence, 	i
unchanged due to the absence of coherent orbital motion
across the layers. Therefore, the magnetoresistance associ-
ated with the incoherent channel is expected to be a function
of the out-of-plane field component only: R�B�=R�B cos ��.
Thus, the proposed mechanism is consistent, at least, quali-
tatively, with the main features of the incoherent channel
observed in the experiment.
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IV. SUMMARY

In conclusion, we have shown that the anomalous behav-
ior of the angle-dependent interlayer magnetoresistance in
the highly anisotropic layered metal
�-�BEDT-TTF�2KHg�SCN�4 can be described by parallel
contribution of two conduction channels, 	c and 	i, provid-
ing, respectively, coherent and incoherent interlayer charge
transfers. A sufficiently high in-plane component of magnetic
field changes the proportion of 	c and 	i in favor of the
latter, thus causing an apparent dimensional crossover. How-
ever, by contrast to the field-induced confinement scenario,19

this crossover does not imply a change in the dynamic prop-
erties of charge carriers. The proposed model is able to ex-
plain not only the observed crossover but also anomalous
features found in other layered metals situated in the tran-
sient region between the fully coherent and incoherent trans-
port regimes.
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